--- title: "Using another Optimizer" author: "" date: "" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Using another Optimizer} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include=FALSE} library(ctsmTMB) ``` In this document we show how to use the `likelihood` method to obtain function handlers for the objective function, and gradient, (and hessian if there are no random efects in your model formulation). These handlers can then be parsed to an optimization algorithm of your own choice. # Simulate from the Ornstein-Uhlenbeck process --- We use the common Ornstein-Uhlenbeck process to showcase the use of `likelihood`. $$ \mathrm{d}X_{t} = \theta (\mu - X_{t}) \, \mathrm{d}t \, + \sigma_{X} \, \mathrm{d}B_{t} $$ $$ Y_{t_{k}} = X_{t_{k}} + e_{t_{k}}, \qquad e_{t_{k}} \sim \mathcal{N}\left(0,\sigma_{Y}^{2}\right) $$ We first create data by simulating the process ```{r} # Simulate data using Euler Maruyama set.seed(10) theta=10; mu=1; sigma_x=1; sigma_y=1e-1 # dt.sim = 1e-3 t.sim = seq(0,1,by=dt.sim) dw = rnorm(length(t.sim)-1,sd=sqrt(dt.sim)) x = 3 for(i in 1:(length(t.sim)-1)) { x[i+1] = x[i] + theta*(mu-x[i])*dt.sim + sigma_x*dw[i] } # Extract observations and add noise dt.obs = 1e-2 t.obs = seq(0,1,by=dt.obs) y = x[t.sim %in% t.obs] + sigma_y * rnorm(length(t.obs)) # Create data .data = data.frame( t = t.obs, y = y ) ``` # Construct model object --- We now construct the `ctsmTMB` model object ```{r} # Create model object obj = ctsmTMB$new() # Set name of model (and the created .cpp file) obj$setModelname("ornstein_uhlenbeck") # Add system equations obj$addSystem( dx ~ theta * (mu-x) * dt + sigma_x*dw ) # Add observation equations obj$addObs( y ~ x ) # Set observation equation variances obj$setVariance( y ~ sigma_y^2 ) # Specify algebraic relations obj$setAlgebraics( theta ~ exp(logtheta), sigma_x ~ exp(logsigma_x), sigma_y ~ exp(logsigma_y) ) # Specify parameter initial values and lower/upper bounds in estimation obj$setParameter( logtheta = log(c(initial = 5, lower = 0, upper = 20)), mu = c( initial = 0, lower = -10, upper = 10), logsigma_x = log(c(initial = 1e-1, lower = 1e-5, upper = 5)), logsigma_y = log(c(initial = 1e-1, lower = 1e-5, upper = 5)) ) # Set initial state mean and covariance obj$setInitialState(list(x[1], 1e-1*diag(1))) ``` ```{r, include=FALSE} temporary_directory <- normalizePath(file.path(tempdir(),"ctsmTMB_cppfiles")) obj$setCppfilesDirectory(temporary_directory) ``` # Estimation --- We are in principle ready to call the `estimate` method to run the optimization scheme using the built-in optimization which uses `stats::nlminb` i.e. ```{r} fit = obj$estimate(.data) ``` Inside the package we optimise the objective function with respect to the fixed parameters using the construction function handlers from `TMB::MakeADFun` and parsing them to `stats::nlminb` i.e. ```{r, eval=FALSE} nll = TMB::MakeADFun(...) opt = stats::nlminb(start=nll$par, objective=nll$fn, grad=nll$gr, hessian=nll$he) ``` # Extract function handlers --- The `likelihood` method allows you to retrieve the `nll` object that holds the negative log-likelihood, and its derivatives. The method takes arguments similar to those of `estimate`. ```{r} nll = obj$likelihood(.data) ``` The initial parameters (supplied by the user) are stored here ```{r} nll$par ``` The objective function can be evaluted by ```{r} nll$fn(nll$par) ``` The gradient can be evaluted by ```{r} nll$gr(nll$par) ``` The hessian can be evaluted by ```{r} nll$he(nll$par) ``` We can now use these to optimize the function using e.g. `stats::optim` instead. # Extract parameter lower/upper bounds --- You can extract the parameter bounds specified when calling `setParameter()` method by using the `getParameters` method (note that `nll$par` and `pars$initial` are identical). ```{r} pars = obj$getParameters() print(pars) ``` # Optimize manually using `stats::optim` We supply the initial parameter values, objective function handler and gradient handler, and parameter bounds to `optim`. ```{r} opt = stats::optim(par=nll$par, fn=nll$fn, gr=nll$gr, method="L-BFGS-B", lower=pars$lower, upper=pars$upper) ``` # Compare results between the two optimizers --- Lets compare the results from using `stats::optim` with the extracted function handler versus the internal optimisation that uses `stats::nlminb` stored in `fit`: ```{r} # Estimated parameters data.frame(external=opt$par, internal=fit$par.fixed) # Neg. Log-Likelihood data.frame(external=opt$value, internal=fit$nll) # Gradient components data.frame(external=t(nll$gr(opt$par)), internal=t(nll$gr(fit$par.fixed))) ``` ```{r clean up, include=FALSE} unlink(temporary_directory, recursive=TRUE) ```